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I NTRODUCT ION

. In recent years there has been considerable interest in the

development of a standardized fracture toughness test utilizing
1 4

chevron-notched specimens. These investigations have determined
that crack growth behavior in chevron-notched specimens depend in part

on the microstructural characteristics of a material, as well as inher-
ent material properties, i.e., yield strength, fracture toughness, work

hardening rate, etc. For example, depending on the material, heat
treatment or test environment, crack growth can occur continuously with
applied load, or in a discontinuous mode (crack jumps), with varying
amounts of plastic yielding occurring at the crack tip. The fracture
mode can range from fibrous failure to cleavage cracking.

Recent advances in acoustic emission (AE) technology have shown
that AE activity in a metal, regardless of the method of mechanical
testing, depends upon metallurgical variables such as composition, and
heat treatment. 5  The purpose of this investigation was to determine
the feasibility of using AE for monitoring the initiation and propaga-
tion of cracks in chevron-notched specimens in order to characterize
cracking mechanisms.

EXPERIMENTAL PROCEDUREq

Materials

Four different cast steel compositions were tested in this
investigation: 15-SPH, AISI 4140, D6AC and AISI 440C. The composition

of each steel is given in Table 1. Castings were prepared by electro-
slag remelting (ESR) the alloys into ingots approximately 200mm
(8-inches) long by 76mm (3-inches) in diameter. Each steel was heat

1 Barker, L. M., Engineering Fracture Mechanics, Vol. 9, 1977,

p. 361.2 Barker, L. M. and Leslie, W. C., in Fracture 1977, Vol. 2, 4th
International Conference on Fracture, Waterloo, Canada, 1977, p. 305.

3 Barker, L. M., "Short Bar Specimens for KIc Measurements",
Fracture Mechanics Applied to Brittle Materials, ASTM STP 678,
S. W. Frieman, Ed., American Society for Testing and Materials, 1979,
pp. 73-82.

4 Barker, L. M., "Short Rod and Short Bar Fracture Toughness Specimen

and Geometrics and Test Methods for Metallic Materials", Fracture
Mechanics: Thirteenth Conference, ASTh STP 743, Richard Roberts, Ed,
American Society for Testing and Materials, 1981, pp. 456-475.

%., 5Wadley, H. N. G., Scruby, C. B. and Speake, J. H., International
Metallurgical Reviews, Vol. 2, 1980, p. 41.
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treated to a common commercially-used condition, then characterized by
measuring hardness, yield and ultimate strengths and percent elonga-
tion. The heat treatment given each steel and the resulting mechanical
properties are presented in Table 2. (No tensile data are shown for
AISI 440C. The specimens were so brittle that they shattered in the
grips.) The microstructure of each alloy is shown in Figure 1.
Figures la, Ib, and Ic show uniform matrices of tempered martensite
typical of the respective alloy and heat treatment. Figure ld (AISI
440C) shows a tempered martensite matrix containing large primary
carbides at the grain boundaries, also typical of this alloy in the
cast condition.

Fracture Toughness Testing

Chevron-notched fracture toughness specimens (25.4mm (1-inch) in
diameter) were machined from the cast ESR ingots. Test specimen con-
figuration and dimensions are described elsewhere.1  The specimens were
heat treated before the thin longitudinal chevron slots were cut. The
chevron-notched rods were tested at ambient temperature in air using a

TerraTek screw-driven mechanical test machine.z  Fracture toughness
values were determined using the method developed by Barker. All
fracture surfaces were characterized by means of the scanning electron
microscope (SEM). An SEM fractograph of each material is shown in
Figure 2. These are interesting in that they all indicate brittle
fracture modes. This is especially apparent in Figure 2a (15-5PH)
which shows cleavage exclusively. Although somewhat less well defined,
it appears that the AISI 4140 (Figure 2b) and the D6AC (Figure 2c)
failed primarily by cleavage also. The fracture illustrated in Figure
2d (AISI 440C) is unique in that it shows cleavage of the second-phase
carbides, and evidence of intergranular fracture of the matrix.

Acoustic Emission Monitoring

Fracture toughness tests of each steel were acoustically monitored
using commercially available Dunegan/Endevco (DE) 3000 series instru-
mentation. The acoustic pick-up was a 100 kHz resonant piezoelectric
transducer (Model DE S9204). The signals from the transducer were pro-
cessed in a signal conditioning unit incorporating a DE 302A amplifier
with gain of 50dB; a DE 1801 preamplifier with gain of 40dB; band pass
filters between 100 kHz and 2 MHz to remove extraneous noise; a DE 920A
distribution analyzer and DE 921 amplitude detector to sum the number
of acoustic emissions greater than a pre-selected threshold of 30dB.
AE data was recorded with a Hewlett-Packard (HP) 9825B computer for
subsequent playback and analysis.

* 4
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Because of the geometry of the TerraTek loading fixture, it was
necessary to use a spacer between the test specimen and the trans-
ducer. The spacer was a 25.4mm (1-inch) diameter by 12.7mm (0.5-inch)
cylinder of PH13-8Mo, Condition H1125, corrosion resistant steel. The

test specimen, spacer and transducer were coupled with DE water-soluble
acoustic couplant.

RESULTS AND DISCUSSION

Load Versus Displacement

Figure 3 shows parametric plots of load versus displacement for
each alloy. In each case, the specimen was slowly loaded until a crack

was intitiated. A continously increasing load was required to advance
the crack until it reached a critical length, where the load went
through a maximum. Two or more relaxation and reloading cycles were
made when the load was near the maximum value to allow calculation of
the degree to which linear elastic fracture mechanics conditions had
been violated.

3

For the 15-5PH, D6AC and AISI 440C, the second unloading repre-
sented the end of the test. In the case of the AISI 4140, a third
load/unload sequence was made in order to calculate the fracture tough-
ness associated with each substantial crack jump. In the crack jump
case, the fracture toughness was taken at the average of several values
of fracture toughness calculated after each major crack jump.

The fracture toughness values computed for each alloy are shown in
Table 3. The data show that fracture toughness was inversely propor-

tional to strength and hardness. Thus, the AISI 440C at a hardness of
HRC 57 exhibited a fracture toughness of 40.2MPaVm (37ksiVin), and the
15-5PH at a hardness of HRC 43 exhibited a fracture toughness of
79.2MPa/m (72ksiVin). As shown in Table 3, the remaining two alloys
were intermediate in hardness and toughness.

Load Versus Acoustic Emission Counts

Figure 4 shows plots of relative load versus cumulative acoustic
emission (AE) counts. It can be seen from the plots that although the
same criterion for unloading was used in each case, the total AE counts
generated up to the first unloading point varied significantly from one
alloy to the next. Thus, the toughest alloy, 15-5PH, generated approx-
imately 1.5 x 10 counts up to the first unloading; whereas, the most
brittle alloy, AMU 440C, generated approximately 6.2 x 105 counts up

to the first unloading point.

.
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Acoustic Emission Count Rate Versus Time (Load Versus Time
Superimposed)

Figure 5 shows AE count rate versus time. Superimposed on each
plot is a plot of load versus time. These plots show that essentially
all of the AE was generated during loading. (The AE observed during
the final unloading should be ignored. The gross "noise" was generated
by the specimen separating rapidly into two halves.)

A comparison of count rates during the first load/unload cycle
between the four alloys confirms the trend observed in Figure 4. That
is, the toughest alloy had a relatively low count rate, 2.8 x 105
counts/second during the first c~ycle, and the most brittle alloy had a
much higher count rate, 9.6 x 10 counts/second during the first cycle.

Log-Sum Amplitude Distributions

Figure 6 contains log-sum amplitude distributions showing AE cumu-
-lative counts on the vertical axis and amplitude in dB on the horizon-

tal axis. In each case, the threshold was set to exclude signals below
30dB. Cumulative amplitude distributions were recorded at 6 second
intervals throughout each test.

At least four distributions are shown for each test. The firstdistribution in each figure shows cumulative AE events versus amplitude
up to the first unloading point. Thus, the first distribution repre-
sents primarily plastic deformation and crack initiation. The second
distribution in each figure is the one immediately following the
first. That is, the one recorded 6 seconds later in the test. For
Figure 6b only, a third distribution is shown taken 6 seconds after the
second distribution. The next to last distribution in each figure was
recorded at the second unloading point. And finally, the last dis-
tribution in each figure is the cumulative amplitude distribution for
the entire test.

The significance of these comparisons is that for all four alloys
a distinct change in amplitude distribution was observed after the
first unloading point. This point would seem to mark the transition
from crack initiation to slow crack growth. From this point on, the
amplitude distributions remained essentially the same.

6
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According to Pollack,6 the shape of the log-sum amplitude dis-
tribution can in many cases be related to the fracture toughness of the
material. Pollack shows that for most engineering materials the slope,
b, will be between 0.7 and 1.5 with occasional values as low as 0.4 or
as high as 4.0. Be states that the lowest b-values are found for dis-
continuous crack growth processes in brittle materials, while plastic
deformation prior to crack growth gives relatively high b-values.

In each of the figures 6a through 6d, b-values are shown for the
first and the last distributions. It will be noted that the final
distribution in Figure 6b has two b-values, and the final distribution
in Figure 6c has three b-values. It is also interesting to note that
in Figures 6b and 6d representing AISI 4140 and AISI 443C respectively,

the b-values for the first distribution were identical.

The b-value data are summarized in Table 3. In general, these
values are in accordance with Pollack's data showing high values for
plastic deformation and low values for slow crack growth. In this
case, however, it appears that the higher b-values represent a combina-

tion of plastic deformation and microcracking. It is apparent also
that for this series of tests the b-values were not proportional to
fracture toughness.

Noise

* To determine the contribution of noise to the total AE signal, a
dummy soecimen (without a sharp notch) was instrumented and loaded well
into the elastic range several times. The AE response recorded during

the final load cycle is shown in Figure 7. Figure 7a shows total AE
counts versus time, and Figure 7b shows count rate versus time. These

pdata show that noise constituted approximately 5 percent of the total
AE activity monitored during fracture toughness testing.

SITMMARY

When testing chevron-notched specimens, it was found that the AE

count rate during loading varied significantly from one alloy to the
next depending on fracture toughness. This is reflected in Table 3 by
the total AR counts at the first unloading point. A comparison of
fracture toughness to total counts at the first unloading point pro-
vided a relative measure of fracture toughness, i.e., the lower the
fracture toughness the higher the count rate. This can be attributed
to microcracking processes initiated early in the first loading cycle.

In all cases, AF. was observed only on loading.

6 Pollock, A. A., Int. Adv. in Nondestructive Testing, Vol. 7, 1Q81,
pp. 215-239.

7
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Log-sum amplitude distributions were used to characterize initial
and final stages of crack growth. For all materials a distinct change

in amplitude distribution was observed after the first unloading
point. From this point on, the amplitude distributions remained essen-
tially the same throughout the test. It appears, therefore, that in

all cases the initial amplitude distribution was characteristic of
plastic deformation and crack initiation, and that all subsequent dis-
tributions represented crack growth. The slopes (b-values) of the amp-
litude distributions were measured as suggested by Pollack, and, in
general, the h-values were in agreement with Pollack's data.

CONCLUS ION S

The following conclusions can be made in regard to AE monitoring
of chevron-notched fracture toughness tests:

(1) AE count and count rate are directly relatable to fracture
toughness values; the tougher alloys produced a relatively low total
count and count rate while more brittle alloys produced a much higher
total count and count rate.

(2) A distinct change in amplitude distribution occurs during the
transition from crack initiation to crack growth.

(3) Log-sum amplitude distribution analysis indicates high values
of the b parameter during the plastic deformation and crack-initiation
stages of testing and low values of b for slow crack growth.

(4) For this series of tests, b-values are not Proportional to
fracture toughness.

(5) All measurements provide a possible means for relating frac-
ture toughness to material phenomena (plastic deformation, microcrack

formation, crack growth).

El"°°° . .. .. . ... .
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% ' TABLE 1. Oemical Analyses Of Materials

Element, 2 by Weight
Alloy C Mn P S Si Cu Cr Ni Mo Cb V Fe

15-5PH 0.04 0.66 0.003 0.004 0.33 3.56 14.95 4.20 - 0.35 - *

*.. AISI 4140 0.42 0.98 0.004 0.007 0.26 - 1.00 - 0.21 - - *

D6AC 0.46 0.74 0.002 0.002 0.29 0.18 1.01 0.59 1.05 - 0.09 *

AISI 440C 1.02 0.50 0.003 0.002 0.22 - 16.50 0.28 0.45 - - *

a* einder

TABLE 2. Mechanical Properties of Fracture Toughness Specimens

0.2% Ultimate
Offset Yield Tensile

Strength, Strength, 2 Elongation Hardness

Alloy Heat Treatment MN/m
2 
(ksi) MN/m

2 
(ksi) 25.4mm (1-inch) NRC

15-5PH Condition H900 1172 (170) 1276 (185) 12 43

AISI 4140 857C (1575"F)-OO 1441 (209) 1544 (224) 10 47
385"C ( 725"F) Temper

D6AC 899"C (1650"F)-QQ 1469 (213) 1655 (240) 8 49
427C ( 830F) Temper

AISI 440C 1038"C (1900"F) Broke in grips (Too brittle) - 57
191'C (375'F) Temper

TABLE 3. Sumwary of Test Results

b-value
Fracture Toughness AF Counts at Initial Final

Material MPa/m (ksilin) first loading Distribution Distribution

15-5PH 79.0 (72) 1.5 x 105 1.05 0.29

AISI 4140 69.3 (63) 2.3 0.83 0.87/0.36

D6AC 66.8 (61) 4.8 1.18 0.64/0.18/0.31

% AISI 440C 40.2 (37) 6.2 0.83 0.53

.... -="_ __ _
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--
'4

FIGURE I1. Microstructures of chevron-not ched fracture toughness
specimens with original magnification at 200X. (a) is 15-5PHI,
(b) is AISI 4140, (c) is M6AC, and (d) is AlISI 440C.
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FIGURE 3 (a). Load versus dislacement for chevron-notched fracture
toughness specimen, 15-SPH.
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FLGUR 3 (b). Load versus displacement for chevron-notched fracture
toughness specimen, AISI 4140.

13



5 ~NWC TP 6476

2500

DOA C

2000

V5

1500

D

g~1000

0

50

0 J

F-0 1000 2000 3000 4000 5Q00
DISPLACEMENT (R~Iative Units)

FIGURE 3 (c). Load versus displacement for chevron-notched fracture
toughness specimen, M6AC.
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FIGURE 3 (d). Load versus displacement for chevron-notched fracture
toughness specimen, AISI 4400.
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FIGURE 4 (a). Load versus cumulative AE counts for chevrjn-notch..;
fracture toughness specimen, 15-5PH.
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FIGURE 4 (b). Load versus cumulative AF cotnts for chevron-notched
fracture toughness specimen, AISI 414n.
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FIGURE 4 (c). Load versus cumulative AE counts for chevron-notched
fracture toughness specimen, M6AC.
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FIGURE 4 (d). Load versus cumulative AE counts for chevron-notched
fracture toughness specimen, AISI 440C.
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FIGURE 5 (a). AF count rate versus time for chevron-notched fracture
toughness specimen, with plot of load versus time superimposed (dotted
line), 15-5PH.
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P[GURE 5 Wb. AE count rate versus time for chevron-notched fracture
toughness specimen, with plot of load versus time superimposed (dotted
line), AISI 4140.
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FIGURE 5 (c). AE count rate versus time for chevron-notched fracture
toughness specimen, with plot of load versus time superimposed (dotted
line), D6AC.
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9"IGURE 5 (d). AE count rate versus time for chevron-notched fracture
toughness specimen, with plot of load versus time superimposed (dotted
line), AISI 440C.
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JIFIJRE, 6 (a). AE amplitude distributions for chevron-notched fracture
toughness specimen, 15-5P11. Threshold was set at 30dB.
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* FIGURE 6 (b) AE amplitude distributions for chevron-notched fracture
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FIGURE 6 (c). AE amplitude distributions for chevron-notched fracture
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rIGURE 7 (a). AE versus time for loading and unloading of dummy specimen
in TerraTak test fixture, AE cumulative counts. This test represents

e'lastic deformation only.
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FIGURE 7 (b). AE versus time for loading and unloading of dummy specimen
in TerraTek test fixture, AE count rate. This test represents elastic

,deformation only.
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